skip to main content


Search for: All records

Creators/Authors contains: "Huang, Yunping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 24, 2024
  2. This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an “anchor-functionality” paradigm. This “anchor-functionality” paradigm is a streamlined design strategy developed from a comprehensive range of materials ( e.g. , lead halide perovskites, II–VI semiconductors, III–V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc. ) and applications ( e.g. , light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc. ). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments. 
    more » « less
  3. null (Ed.)
    Organic hybrid light-emitting diodes (hybrid-LEDs) employ organic dyes as light converters on top of commercial blue inorganic LEDs, replacing incumbent inorganic phosphor light converters synthesized from rare-earth and/or toxic metallic elements to optimize device environmental sustainability. Here, we present two naturally derived organic dyes for hybrid-LEDs, highlighting stability and efficiency enhancement based on a novel “acceptor–acceptor” molecular design. This “acceptor–acceptor” skeleton comprises theobromine and thiadiazole, two electron-withdrawing groups that lower energy levels and suppress photooxidation. This differentiates these dyes from the widely adopted “donor–acceptor” skeleton, where photooxidation is facilitated by the presence of electron-donating units. Simultaneously, sidechains on organic dyes used to enhance solution processability, crucial for film transparency, introduce an additional photooxidation pathway. With this “acceptor–acceptor” skeleton, the destabilization from sidechains was offset by the stability enhancement from the electronic effects in the backbone. When blended within an industrial polymer, poly(styrene-butadiene-styrene) (SBS), their enhanced solubility enables the formation of highly transparent films, crucial for reducing scattering loss in LEDs. Furthermore, resultant dye-SBS films achieved photoluminescence quantum yields (PLQYs) of around 90% under ambient conditions. Taking advantage of their transparency and solution processability, we fabricated a waveguide with this theobromine-dye-SBS composite, which was subsequentially assembled into an edge-lit LED device of no glare and enhanced aesthetics. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing π–π interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. 
    more » « less
  7. Abstract

    Light‐emitting diodes (LEDs) are a lighting technology with a huge and ascending market. Typically, LED backlights are often paired with inorganic phosphors made from rare‐earth elements (REEs) to tune the emission lineshapes for different applications. However, REE production is a resource‐intensive process with many negative environmental impacts. Herein organic hybrid LEDs are developed using organic dyes synthesized from an abundant and non‐toxic natural product (theobromine) to replace REE phosphors. The resulted hybrid LED generates continuous emission from 400–740 nm, resulting in a high color rendering index (the current industry standard) of 90 and a color fidelity index (the most advanced and comprehensive standard) of 92, challenging commercial LEDs based on REE phosphors. In addition, the light‐converting composite is made from 99 wt% SBS, an inexpensive industrial polymer, and 1 wt% theobromine dyes, reducing the cost of the light converter to ¢1.30 for a 1 W LED, compared to approximately ¢ 19.2 of commercial products. The light converting efficiency of the dye‐SBS composite is 82%. Excited state kinetics experiments are also conducted to provide guidance to further increase the light‐converting efficiency of the theobromine dyes while maintaining excellent color rendering and fidelity.

     
    more » « less
  8. Abstract Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. 
    more » « less
  9. Abstract

    In 2018, several major breakthroughs have been achieved in organic solar cells (OSCs) with the record power conversion efficiency (PCE) reaching over 17 %. With this increased efficiency, it is time to take a step forward to consider how to convert this technology into large scale production. For this, the economic and environmental profile of OSCs should be taken seriously‐simplified synthetic routes and green chemistry methods should be applied. According to previous studies, OSCs are competitive and profitable in the commercial market. However, toxic and/or hazardous chemicals are currently used in materials synthesis and device fabrication of OSCs. In this account, we will talk about contributions and efforts we have made to minimize the economic and environmental disadvantages in the production of OSCs. We will start with the background on how our projects were conceived and will specifically discuss our work on direct arylation and green solvent. Developments of direct arylation for synthesizing conjugated polymers will be illustrated along with our recent finding regarding the effect of green solvents on device performance and stability.

     
    more » « less